A NEW APPROACH TO VISION-BASED ROAD FOLLOWING FOR AUTONOMOUS VEHICLES

Daniel Raviv* and Martin Herman*#

*Robotics Center and Electrical Engineering Department
Florida Atlantic University, Boca Raton, FL 33431; and
Sensory Intelligence Group, Robot Systems Division
National Institute of Standards and Technology
Gaithersburg, MD 20899
**Sensory Intelligence Group, Robot Systems Division
National Institute of Standards and Technology
Gaithersburg, MD 20899



-2.-

ABSTRACT

This paper presents a new approach for vision-based autonomous road
following. By building on a recently developed optical flow-based
theory, we suggest that motion commands can be generated directly from
a visual feature, or cue, consisting of the projection into the image of the
tangent point on the edge of the road, along with the optical flow of this
point. Using this cue, we suggest some vision-based partial control algo-
rithms for both circular and non-circular roads. There are several advan-
tages to using this visual cue: (1) it is extracted directly from the image,
i.e., there is no need to reconstruct the scene, (2) for many road follow-
ing situations this visual cue is sufficient, (3) the related computations
are relatively simple and thus suitable for real-time applications.



1. INTRODUCTION

Algorithms for vision-based road following have recently been
explored by many investigators [2, 3, 4, 8, 9, 10]. Most of them convert
the information extracted from images into a 3-D, vehicle-centered carte-
sian coordinate system aligned with the ground plane. Steering decisions
are then determined in this coordinate system. A 3-D reconstruction is
therefore performed before steering decisions are made.

This paper approaches the road following problem by building on
the theoretical framework of the recently developed visual field theory
[5, 6]. This theory provides quantitative relationships between a station-
ary 3-D environment and a moving camera. The theory involves pre-
computing the expected instantaneous optical flow values in the camera
imagery arising from every point in 3-D space.

This paper suggests that for following curved, convex roads, the
tangent point on the road edge (i.e., the point on the road edge lying on
an imaginary line tangent to the road edge and passing through the cam-
era) and its optical flow are sufficient to generate control commands.
Therefore, all image processing effort may be directed towards reliably
finding and tracking the tangent point and extracting its optical flow.

This paper also derives fast, computationally inexpensive, and sim-
ple partial control algorithms. In other words, once relevant visual infor-
mation has been extracted, we show how to use it to generate steering
wheel commands. These algorithms require the location of the tangent
point (in the image) and its optical flow. Other inputs to these algorithms
may be the current steering angle, the current vehicle speed, etc. The
output of these control algorithms is the change in steering angle for the
next instant of time. (In this paper, we do not consider decisions about
speed and acceleration of the vehicle.)

The control schemes presented are partial since only the kinematics
of the vehicle and the camera are considered. Also, stability, robustness
and sensitivity issues are not considered in this paper. Some of the
visual cues suggested in this paper have been used to develop road fol-
lowing control algorithms for a real mobile robot [11].

2. DEFINITIONS AND ASSUMPTIONS

2.1. ROAD FOLLOWING

We define a road as any continuous, extended, curvilinear feature.
The goal of road following is to follow along this feature over an
extended period of time. In what we normally think of as road follow-
ing, a road is defined either by its boundaries or by an extended solid or
dashed white line. Here, the goal is not only to follow along these
features but also to stay within a constant lateral distance from these
features. Vision-based road following requires the ability to continuously
detect and track features in imagery obtained from an onboard camera,
and to make steering decisions based on visual properties of these
features.

Figure 1 shows a point on a vehicle and the left-hand side road
edge. The unit vector # is the instantaneous heading of the vehicle, O is
the instantaneous center of curvature of the vehicle path, and r is the
instantaneous radius of curvature of this path. We define road following
as an activity that involves servoing 4 such that it follows the road edge.
It is desired that # be servoed such that the vehicle is always parallel to
the tangent to the local curvature of the road edge (Figure 1), and such
that the distance s of a point on the vehicle from the road edge is main-
tained at a constant value. In other words, the instantaneous center of
curvature of the road edge and the instantaneous center of curvature of
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the vehicle path should coincide, and the tangent to the edge of the road
at the intersection point B should be parallel to 4. In this paper, we
assume that the road is curved.

2.2. COORDINATE SYSTEM

The equations in this paper will be defined in a coordinate system
which is fixed with respect to the camera on board the vehicle. This
coordinate system is shown in Figure 2. We assume that the camera is
mounted on a vehicle (later we explain how) moving in a stationary
environment. Assume a pinhole camera model and that the pinhole
point of the camera is at the origin of the coordinate system. This coor-
dinate system is used to measure angles to points in space and to meas-
ure optical flow at these points. We use spherical coordinates (R -6-¢)
for this purpose. In this system, angular velocities (8 and ¢) of any point
in space, say P, are identical to the optical flow values at P’ in the image
domain. Figure 3 illustrates this concept: 6 and ¢ of a point in space are
the same as 6 and ¢ of the projected point P’ in the image domain, and
therefore there is no need to convert angular velocities of points in 3D
space to optical flow. In Figure 3 the image domain is a sphere. How-
ever, for practical purposes the surface of the image sphere can be
mapped onto an image plane (or other surface).

2.3. TWO-WHEELED VEHICLE

In this paper, we use a theoretical two-wheeled vehicle as illus-
trated in Figure 4. A rigid frame of length 2m holds both wheels. A
steering wheel angle is applied to both wheels simultaneously, i.c., if one
wheel is rotated by an angle B relative to the frame, the other wheel will
rotate by the same angle. This apparatus assures that both wheels will
always stay at the same distance from the instantaneous center of curva-
ture of the vehicle’s path. The camera is mounted such that its pinhole
point is located above the front wheel center, and it rotates with the front
wheel. The optical axis of the camera coincides with the instantaneous
translation vector (heading) of the front wheel.

The following geometrical relationship holds for the vehicle in Fig-
ure 4:

m
sinf M
The frame length m is usually known. Thus the instantaneous radius of

curvature r of the vehicle path can be determined by measuring the
steering angle p.

Figure 5 is an overall description of the system including the
spherical coordinate system. For convenience we chose to have the Z
axis pointing down. However the same coordinate system as described in
Figure 2 is used here. The camera is mounted at some height above the
ground and rotates with the front wheel. The position of any point on the
road can be expressed with the coordinates R,9 and ¢, as shown in Fig-
ure 5.

In the following analysis, we assume a moving vehicle in a station-
ary environment. The road is assumed to be planar, and road edges are
assumed to be extractable. Figure 11 shows examples of road images
obtained from a camera mounted on a vehicle.

3. VISUAL FIELD THEORY

We have recently developed a new visual field theory that relates
six-degree-of-freedom camera motion to optical flow for a stationary
environment [5, 6]. The theory describes the structure of a field in 3-D
space consisting of contours and surfaces surrounding the moving

r=
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camera. If static objects are placed anywhere in the surrounding space,
the optical flow produced by these objects in the camera is predicted by
the field theory. The field is always centered at the camera pinhole point
and moves with the camera. The structure of the field changes as a func-
tion of the instantaneous camera motion.

This theory provides us with a theoretical and scientific basis for
developing constraints, control schemes, and optical flow-based visual
cues for road following. This section reviews this theory as it relates to
the road following problem.

3.1. EQUATIONS OF MOTION AND OPTICAL FLOW

First we describe the equations that relate a point in 3-D space to
the projection of that point in the image for general six-degree-of-
freedom motion of the camera.

Let the instantaneous coordinates of the point P be R = (X,Y ,.Z)7,
where the superscript T denotes transpose (Figure 2). AssuminTg the
instantaneous translational velocity of the camera is t= (U,V,W)! and
the instantaneous angular velocity is @ = (4,B,C)T then we have shown
that the optical flow of point P can be expressed as [7]:

-Y X 0
9 X2+Y2 X2+Y2 ~-U-BZ+CY
6 = —XZ _YZ VX472 _v‘:/——i); :‘;}Z{
XY X2%4Y242Z%) NXAY2(XAYHZD)  XuY%Z2
2

where dot denotes first derivative with respect to time. As mentioned
earlier, 8 and ¢ of a point in space (i.e., the angular velocities in the
camera coordinate system) are the same as the optical flow components
6 and ¢ (Figure 3).

Suppose that we want to determine the locus of points in 3-D
space that produce constant optical flow values 8 and constant optical
flow values ¢ in the image for a given arbitrary six-degree-of-freedom
camera motion. To do so we simply set 6 and ¢ in equation set (2) to
the desired constants and solve for X, Y, and Z. All points in 3-D space
that satisfy this solution are called equal flow points. However, the solu-
tion to these two equations is not unique since there are three unknowns
and two equations. In general, there is an infinite number of solutions.

3.2. A SPECIAL CASE

In this section we analyze a specific motion in the instantaneous
XY (¢ = 0) plane of the camera coordinate system.

Let the camera motion vectors t and o be given as follows:
t=U.V.0 3
o = (0,0,C). “)

This means that the translation vector may lie anywhere in the instan-
tanous XY plane while the rotation is about the Z-axis. Substituting these
motion vectors into equation set (2) yields:

=Y _ _X 0
6 x2y? X%4y? ~U+CY
0|~ -XZ -¥Z a2 ||7VoK ©

R 2472422 XHY2X2Y5HZ2)  X4Y%4Z2

Setting 6 and ¢ in equation set (5) to constants will result in a set of
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equal flow points for this specific motion.

Consider the case where the optical flow value of 6 is constant,
From equation set (§), the points in space that result from constant 6
(regardless of the value of ¢) form a cylinder of infinite height whose
equation is

2 2

i, ®

2(C+0)

2 2
X+ 4 — | +|¥- v : = 14 -
2(C+0) 2(C+0) 2(C+6)
as displayed in Figure 6.

The meaning of equation (6) is the following: all points in 3-D
space that liec on the cylinder described by Equation (6) and which are
visible (i.e., unoccluded and in the field of view of the camera) produce
the same instantaneous horizontal optical flow 6. We call the cylinder on
which equal flow points lie the equal flow cylinder.

3.3. ZERO FLOW CYLINDERS

One of the equal flow cylinders corresponds to points in 3-D space

that produce zero horizontal flow. We call this cylinder a zero flow

cylinder. The equation that describes the zero flow cylinder can be

obtained by setting 6 = 0 in Equation (6), i.e.,

2 2

|4 vy _|Vv U
= [2c *

2 2
X+ ——]+ 'E Z—C' . (7)
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We have shown [5] that if the Z component of the camera rotation vec-
tor w is positive (i.e., C > 0), then visible points in the XY plane that are
inside the zero flow cylinder produce positive horizontal optical flow
(8 > 0), while visible points outside the zero flow cylinder produce nega-

tive horizontal optical flow (0 < 0) in the image (see Figure 7). If o is
negative (i.e., C > 0) then the opposite is true.

3.4. EQUAL FLOW CYLINDERS AS A FUNCTION OF TIME

As the camera moves through 3-D space, the equal flow cylinders
move with it. Figure 8 shows sections of equal flow cylinders as a func-
tion of time. At each instant of time, the radii of the equal flow
cylinders are a function of the instantaneous motion parameters t and o.
The locations of the equal flow cylinders are such that they always con-
tain the origin of the camera coordinate system (the same as the camera
pinhole point), are tangent to the instantaneous translation vector t, and
their symmetry axes are parallel to the instantaneous rotation vector .
(In Figure 8, the direction of @ varies over time.) Each zero flow
cylinder lies to the left or right of the translation vector depending on
whether the instantanous rotation is positive or negative, respectively.

4. ANALYSIS OF ROAD FOLLOWING

We describe two road following scenarios. The first one is for a
circular road, where we outline basic geometric and motion-related rela-
tionships. Using this relatively simple case, we explain the problem of
following a road using a vision sensor, problems associated with it, and
relate it to the visual field theory described above. We also suggest road
following control approaches. The second road following scenario is for
an arbitrary convex curved road, where we also suggest control
approaches.

4.1. CIRCULAR ROAD

In this section, we consider following along a circular road. Given
visual cues, a goal of a control system is to find the steering angle. If
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the vehicle is already on a path that follows the road, then only changes
in steering angle are necessary. Figure 9 shows a vehicle moving
around a circular road of radius /. The path traversed by the vehicle is a
circle of radius r. Let the unit vector ¢ indicate the direction of the
tangent line, a line that contains the camera pinhole point and is tangent
to the road edge.

It can be proved [7] that the tangent point T lies on the instantane-
ous zero flow cylinder if the camera orientation is fixed relative to the
vehicle. This proof holds no matter what the diameter of the circular
road edge. This means that no matter how far the vehicle is from the
road edge (Figures 10 and 11a), the tangent point lies on the zero flow
cylinder. Thus the horizontal component of optical flow of the tangent
point is always zero.

In Figure 9, therefore, the optical flow 8 due to point T is zero. Let
the distance from the vehicle to the road edge be s, and let 6 be the
positive angle to ¢+ measured from the X -axis. From Figure 9, the follow-
ing relationships hold:

I =r sind ®)
s =r-l = r(1-sinf) 9

Differentiating Equation (8) with respect to time:
[ = #sin® + rBcosd (10

where dot denotes derivative with respect to time. For a circular road, !
is constant, and thus / can be set to zero in Equation (10):

0 = 7sind + 7O cosd
F=-r0coth 11)

When the vehicle is moving on a perfect circular path both 7 and 6 are
equal to zero. However, suppose the vehicle’s path is not a perfect cir-
cle. Since r is the instantaneous radius of curvature of the vehicle
motion, 7 is the rate at which the curvature changes. Equation (11) sug-
gests a way of controlling the vehicle motion so as to achieve a constant
circular motion. Consider the two-wheeled vehicle described in Section
2.3. From Equation (1), we can derive the following:

B= sin-l(%). (12)

Equation (12) gives a value of the steering angle B as a function of the
instantaneous radius of curvature r and the distance 2m between the two
wheels. Normally the value m is known. For a more realistic vehicle
(such as a four-wheeled vehicle with front-wheel steering), some other
relationship may hold.

In Equation (11), r is the rate at which the radius of curvature of
the vehicle motion is changing. We can express 7 as a function of the
steering angle B by differentiating Equation (1) with respect to time:

F= o g (13)
sin“B
Substituting Equations (13) and (1) into (11) and solving for B :
B =6 tanp cotd (14)

Equation (14) suggests a partial control scheme whose inputs are the
current steering angle B, the current angle 6 of the tangent line relative to
the X-axis, and the optical flow 8 of the tangent point. All of these
inputs can be measured. The variable being computed is the rate of
change of the steering angle, B. Equation (14) provides the gain
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by which @ should be multiplied in order to get the correct change in
steering wheel angle. This gain depends on the current steering wheel
angle B and the angular location 6 of the tangent point in the image.

Figure 11b shows a sequence of images taken from a camera
mounted on a vehicle. The images in the figure are numbered in the
same order in which they were taken. The road is almost circular. Note
that the tangent point (almost) stays at the same location in each image
in the sequence. If the road were perfectly circular and the vehicle were
moving on a perfect circular path, then the position of the tangent point
would not change from image to image. However, if the vehicle’s path
is not a perfect circle, then its steering can be controlled by measuring
horizontal changes in the position of the tangent point. These changes
are the horizontal component of optical flow at that point, and can be
used to generate changes (B) in the steering wheel command p.

It is important to emphasize that the derivation of B takes into
account the kinematics of the system but not the dynamics. This is also
the reason why we emphasize that the control scheme is not complete.

If the rate of change of the steering angle, B, is the only variable
being controlled (as indicated in Equation (14)), then in practice the
vehicle may not maintain a constant distance from the edge of the road.
Therefore, in addition to Equation (14), Equation (9) can also be used to
control the vehicle to achieve a constant circular motion. Substituting
Equation (1) into (9):

m .
s sinp (1-sinf)

or
B= sin'l[%(l—sine)] (15)

Equation (15) suggests a partial control scheme whose inputs are the
measured angle 6 of the tangent line relative to the X -axis, the desired
distance s of the vehicle from the road edge, and the distance 2 m
between the front and rear wheels. The variable being computed is the
steering angle p.

The control signals (B and B) and partial control schemes suggested
above assume that the road is circular, that the center of curvature of the
vehicle path coincides with the center of curvature of the circular road,
and that the road is planar. It is also assumed that the tangent point (in
the image) is traceable, and that the vehicle heading coincides with the
camera optical axis. There are several advantages to this approach: (1) it
is simple and therefore computationally inexpensive, (2) it is independent
of the speed of the vehicle, (3) it is independent of the camera height
above the road, (4) only a few measurements are necessary to control the
vehicle, and (5) only a very small portion of the image -- the portion
around the tangent point -- needs to be analyzed, in principle. (Of
course, item (5) may not be true in practice since larger portions of the
road may have to be extracted in order to reliably find the tangent point.)

5. CURVED ROAD FOLLOWING

In this section, we consider road following for the case where the
curvature of a convex road is not constant. Figure 12 shows two cases.
In Figure 12a the radius of curvature increases as the vehicle moves. In
Figure 12b, the radius of curvature decreases. In Figure 12a, let the
current instantaneous center of curvature of the vehicle path be at 0. If
the road curvature were constant (indicated by an imaginary road shown
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as a dotted line in Figure 12a), then the point of tangency of the vector ¢
would lie on this imaginary road, and this point would lie on the zero
flow cylinder. However, because the road’s curvature is changing, the
point of tangency is at T. Notice that the point T lies on some equal
flow cylinder whose 6 optical flow is negative (T lies outside the zero
flow cylinder). If the radius of curvature were decreasing (Figure 12b),
the tangent point would lie inside the zero flow cylinder, and its 6 opti-
cal flow would be positive. Therefore, intuitively, if the horizontal com-
ponent of the optical flow, 6, at the tangent point is measured, then its
value can be used as a control signal for steering the vehicle. If 6 is
negative (Figure 12a) then the steering command is to increase the radius
of curvature of the vehicle’s current motion. If @ is positive (Figure
12b), then the steering command is to decrease the radius of curvature of
the vehicle’s current motion by sharpening the turn.

6. CONCLUSION

In this paper, we have shown that, in principle, a road feature.
sufficient for following curved, convex roads is the position of the
tangent point on the road edge and its optical flow. In practice, larger
portions of the road may have to be extracted in order to reliably find
the tangent point. We also showed that fast, simple control approaches
are possible that directly use measured image quantities.

The partial control schemes presented in this paper have not been
implemented yet. Current and future work will be directed towards
implementing control algorithms that use the approaches suggested in
this paper [11]. Issues such as the dynamics of the vehicle, sensitivity,
stability, robustness, and time delays must be considered when develop-
ing control algorithms for real vehicles.
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Figure 2. Coordinate system fixed to camera.
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TANGENT POINTS

CAMERA Bt
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Figure 11. Images obtained from camera mounted on a vehicle.
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Figure 12. Road following: (a) Increasing radius of curvature;
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